bebi103.gp.cov_matern
- bebi103.gp.cov_matern(X1, X2=None, alpha=1.0, rho=1.0, nu=2.5)
Return covariance matrix for a Matérn kernel.
- Parameters
X1 (1D, shape (n,) or 2D array, shape (n, d)) – Array of n points to compute kernel. If a 1D array, assume the points are one-dimensional. If a 2D array, assume the points are d-dimensional.
X2 (1D, shape (m, ) or 2D array, shape (m, d) or None) – Array of m points to compute kernel. If a 1D array, assume the points are one-dimensional. If a 2D array, assume the points are d-dimensional. If None, assume m = 0 in output.
alpha (float) – Marginalized standard deviation of the kernel.
rho (float) – Length scale of the kernel.
nu (float) – Smoothness parameter of the kernel.
- Returns
output
- Return type
array, shape(n + m, n + m)